Ionic current model of a hypoglossal motoneuron.

نویسندگان

  • Liston K Purvis
  • Robert J Butera
چکیده

We have developed a single-compartment, electrophysiological, hypoglossal motoneuron (HM) model based primarily on experimental data from neonatal rat HMs. The model is able to reproduce the fine features of the HM action potential: the fast afterhyperpolarization, the afterdepolarization, and the medium-duration afterhyperpolarization (mAHP). The model also reproduces the repetitive firing properties seen in neonatal HMs and replicates the neuron's response to pharmacological experiments. The model was used to study the role of specific ionic currents in HM firing and how variations in the densities of these currents may account for age-dependent changes in excitability seen in HMs. By varying the density of a fast inactivating calcium current, the model alternates between accelerating and adapting firing patterns. Modeling the age-dependent increase in H current density accounts for the decrease in mAHP duration observed experimentally, but does not fully account for the decrease in input resistance. An increase in the density of the voltage-dependent potassium currents and the H current is required to account for the decrease in input resistance. These changes also account for the age-dependent decrease in action potential duration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P2 receptor excitation of rodent hypoglossal motoneuron activity in vitro and in vivo: a molecular physiological analysis.

The role of P2 receptors in controlling hypoglossal motoneuron (XII MN) output was examined (1) electrophysiologically, via application of ATP to the hypoglossal nucleus of rhythmically active mouse medullary slices and anesthetized adult rats; (2) immunohistochemically, using an antiserum against the P2X2 receptor subunit; and (3) using PCR to identify expression of P2X2 receptor subunits in m...

متن کامل

Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease

Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron ...

متن کامل

Evaluation of GluR2 subunit involvement in AMPA receptor function of neonatal rat hypoglossal motoneurons.

AMPA receptors (AMPAr) mediate fast synaptic responses to glutamate and, when they lack the GluR2 subunit, are strongly Ca2+ permeable and may increase intracellular Ca2+ levels. Because hypoglossal motoneurons possess restricted ability to buffer internal Ca2+ and are vulnerable to Ca2+ excitotoxicity, we wondered if, in these cells, any significant Ca2+ influx could be generated via AMPAr act...

متن کامل

Differential involvement of perineuronal astrocytes and microglia in synaptic stripping after hypoglossal axotomy.

Following peripheral axotomy, the presynaptic terminals are removed from lesioned neurons, that is synaptic stripping. To elucidate involvement of astrocytes and microglia in synaptic stripping, we herein examined the motoneuron perineuronal circumference after hypoglossal nerve transection. As reported previously, axotomy-induced slow cell death occurred in C57BL/6 mice but not in Wistar rats....

متن کامل

Compartmental Model of Vertebrate Motoneurons for Ca-Dependent Spiking and Plateau Potentials Under Pharmacological Treatment

transmitters and ion-channel blockers. We have developed a quantiVertebrate motoneurons possess a variety of ionic conductative motoneuron model, based on turtle motoneuron data, to tances that under normal conditions give rise to a relatively investigate the roles of specific ionic currents and the effects of limited firing repertoire characterized by fast action potentheir soma and dendritic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2005